
VirtualFish Documentation
Release 2.5.3

Leigh Brenecki, Justin Mayer, and contributors

Jun 29, 2021

Contents

1 Contents 3
1.1 Installation and Setup . 3
1.2 Usage . 4
1.3 Plugins . 6
1.4 Extending VirtualFish . 10
1.5 Frequently Asked Questions . 11
1.6 See Also . 12

2 Contributors 13

i

ii

VirtualFish Documentation, Release 2.5.3

VirtualFish is a Python virtual environment manager for the Fish shell.

Contents 1

https://virtualenv.pypa.io/en/latest/
https://fishshell.com/

VirtualFish Documentation, Release 2.5.3

2 Contents

CHAPTER 1

Contents

1.1 Installation and Setup

1.1.1 Installing

1. Make sure you are running Fish 3.1+. If you are running an Ubuntu LTS release that has an older Fish version,
install Fish via the Fish 3.x release series PPA.

2. The easiest way to install VirtualFish is by running: python -m pip install --user
virtualfish. If you’re using Pipx, it is better to use: pipx install virtualfish.

3. Install the VirtualFish loader by running:

vf install

If you want to use VirtualFish with plugins, list the names of the plugins as arguments to the install command:

vf install compat_aliases projects environment

Note: After performing the above step, you will be prompted to run exec fish in order to make these changes
active in your current shell session.

4. Customize your fish_prompt

1.1.2 Customizing Your fish_prompt

VirtualFish doesn’t attempt to mess with your prompt. Since Fish’s prompt is a function, it is both much less straight-
forward to change it automatically, and much more convenient to simply customize it manually to your liking.

The easiest way to add the active virtual environment’s name to your prompt is to type funced fish_prompt and
add the following line somewhere:

3

https://launchpad.net/~fish-shell/+archive/ubuntu/release-3
https://pipxproject.github.io/pipx/

VirtualFish Documentation, Release 2.5.3

if set -q VIRTUAL_ENV
echo -n -s (set_color -b blue white) "(" (basename "$VIRTUAL_ENV") ")" (set_color

→˓normal) " "
end

Then, type funcsave fish_prompt to save your new prompt to disk.

1.1.3 Un-installing

To un-install VirtualFish, run:

vf uninstall
python -m pip uninstall virtualfish

1.2 Usage

1.2.1 Commands

• vf new [<options>] <envname> - Create a virtual environment.

• vf ls [--details] - List the available virtual environments.

• vf activate <envname> - Activate a virtual environment. (Note: Doesn’t use the activate.fish
script provided by Virtualenv.)

• vf deactivate - Deactivate the current virtual environment.

• vf upgrade [<options>] [<envname(s)>] - Upgrade virtual environment(s).

• vf rm <envname> - Delete a virtual environment.

• vf tmp [<options>] - Create a temporary virtual environment with a randomly generated name that will
be removed when it is deactivated.

• vf cd - Change directory to currently-activated virtual environment.

• vf cdpackages - Change directory to currently-active virtual environment’s site-packages.

• vf globalpackages - Toggle system site packages.

• vf addpath - Add a directory to this virtual environment’s sys.path.

• vf all <command> - Run a command in all virtual environments sequentially.

• vf connect [<envname>] - Connect the current working directory with the currently active (or specified)
virtual environment. This requires the auto-activation plugin to be enabled in order to have any effect besides
creating a .venv file in the current directory.

If you are accustomed to virtualenvwrapper commands (workon, etc.), you may wish to enable the Virtualenvwrapper
Compatibility Aliases (compat_aliases) plugin.

1.2.2 Using Different Pythons

By default, the environments you create with VirtualFish will use the same Python version that was originally used to
Pip-install VirtualFish, which will usually be your system’s default Python interpreter.

4 Chapter 1. Contents

https://virtualenv.pypa.io/en/latest/
https://bitbucket.org/dhellmann/virtualenvwrapper

VirtualFish Documentation, Release 2.5.3

If you want to create a new virtual environment with a different Python interpreter, add the --python PYTHON_EXE
(-p for brevity) flag to vf new, where PYTHON_EXE is any Python executable. For example:

vf new -p /usr/bin/python3 my_python3_env

Specifying the full path to the Python executable avoids ambiguity and is thus the most reliable option, but if the target
Python executable is on your PATH, you can save a few keystrokes and pass the bare executable instead:

vf new -p pypy my_pypy_env

Sometimes there may be Python interpreters on your system that are not on your PATH, with full filesystem paths that
are long and thus hard to remember and type. VirtualFish makes dealing with these easier by automatically detecting
and using Python interpreters in a few known situations, in the following order:

1. asdf Python plugin is installed and has built the specified Python version.

2. Pyenv is installed and has built the specified Python version.

3. Pythonz is installed and has built the specified Python version.

4. Homebrew keg-only versioned Python executable (e.g., 3.8) found at: /usr/local/opt/python@3.8/
bin/python3.8

For asdf, Pyenv, and Pythonz , in addition to passing option flags such as -p python3.8 or -p python3.9.0a4,
you can even get away with specifying just the version numbers, such as -p 3.8 or -p 3.9.0a4.

1.2.3 Upgrading Virtual Environments

Virtual environments contain links to Python interpreters that can become outdated over time. In addition, sometimes
the underlying Python interpreter can be removed by Python upgrades, putting the virtual environment into an unusable
state. Thankfully, VirtualFish includes a mechanism for upgrading outdated/broken environments.

To understand which environments might be outdated/broken, run:

vf ls --details

VirtualFish compares environment Python versions to the current default Python version, as specified by the
VIRTUALFISH_DEFAULT_PYTHON variable (see below), if defined. To perform a minor (point-release) upgrade to
the currently-active virtual environment, run:

vf upgrade

Minor point-release upgrades will modify in-place the virtual environment’s Python version number and symlinks.
(While this should work correctly in the majority of cases, there is the possibility that future changes to virtual envi-
ronment structure will interfere with this in-place upgrade.)

For major version upgrades, say from Python 3.8.x to 3.9.x, you must instead re-build the environment via:

vf upgrade --rebuild

Re-building an environment will record its current package versions, remove the old environment, create a new envi-
ronment with the same name, and re-install the list of recorded package versions.

If VirtualFish determines that a virtual environment is in a broken state, it will re-build that environment, even if
--rebuild is omitted.

To upgrade to a specific Python interpreter or version, use the --python option:

1.2. Usage 5

https://asdf-vm.com/
https://github.com/pyenv/pyenv
https://github.com/saghul/pythonz
https://docs.brew.sh/Homebrew-and-Python
https://asdf-vm.com/
https://github.com/pyenv/pyenv
https://github.com/saghul/pythonz

VirtualFish Documentation, Release 2.5.3

vf upgrade --rebuild --python /usr/local/bin/python3.8

Virtual environments need not be active in order to upgrade them. To upgrade one or more virtual environments,
specify their names:

vf upgrade project1 project2

Upgrades can also be applied to all environments. To re-build all existing environments:

vf upgrade --rebuild --all

1.2.4 Configuration Variables

The vf install [...] installation step writes the VirtualFish loader to a file at $XDG_CONFIG_HOME/fish/
conf.d/virtualfish-loader.fish, which on most systems defaults to: ~/.config/fish/conf.d/
virtualfish-loader.fish

You can edit this file to, for example, change the plugin loading order. You can also add the following optional
variables at the top, so that they are set before virtual.fish is sourced.

• VIRTUALFISH_HOME (default: ~/.virtualenvs) - where all your virtual environments are kept.

• VIRTUALFISH_DEFAULT_PYTHON - The default Python interpreter to use when creating a new virtual en-
vironment; the value should be a valid argument to the Virtualenv --python flag.

Regardless of the changes that you make, you must run exec fish afterward if you want those changes to take
effect for the current shell session.

1.3 Plugins

VirtualFish comes with a number of built-in plugins.

You can use them by passing their names as arguments to the vf install command when installing for the first
time. For example, the following will activate the compat_aliases, projects, and environment plugins:

vf install compat_aliases projects environment

To add or remove plugins after installation, use the vf addplugins and vf rmplugins commands. For exam-
ple, the following will activate the auto_activation and projects plugins, and the subsequent command will
remove the projects plugin:

vf addplugins auto_activation projects
vf rmplugins projects

1.3.1 Virtualenvwrapper Compatibility Aliases (compat_aliases)

This plugin provides some global commands to make VirtualFish behave more like Doug Hellman’s virtualenvwrap-
per.

6 Chapter 1. Contents

https://virtualenv.pypa.io/en/latest/
https://bitbucket.org/dhellmann/virtualenvwrapper
https://bitbucket.org/dhellmann/virtualenvwrapper

VirtualFish Documentation, Release 2.5.3

Commands

• workon <envname> = vf activate <envname>

• deactivate = vf deactivate

• mkvirtualenv [<options>] <envname> = vf new [<options>] <envname>

• mktmpenv [<options>] = vf tmp [<options>]

• rmvirtualenv = vf rm <envname>

• lsvirtualenv = vf ls

• cdvirtualenv = vf cd

• cdsitepackages = vf cdpackages

• add2virtualenv = vf addpath

• allvirtualenv = vf all

• setvirtualenvproject = vf connect

1.3.2 Auto-activation (auto_activation)

With this plugin enabled, VirtualFish can automatically activate a virtualenv when you are in a certain directory. To
configure it to do so, change to the directory, activate the desired virtualenv, and run vf connect.

This will save the name of the virtualenv to a file named .venv. VirtualFish will then look for this file every time you
cd into the directory (or pushd, or anything else that modifies $PWD).

Note: When this plugin is enabled, ensure any environment variables that affect VirtualFish are set as noted in
Upgrading Virtual Environments and not in config.fish. Files in ~/.config/fish/conf.d/ (including
VirtualFish) are sourced before config.fish, and thus variables set in config.fish may not be available to
VirtualFish.

Commands

• vf connect - Connect the current virtualenv to the current directory, so that it is activated automatically as
soon as you enter it (and deactivated as soon as you leave).

Configuration Variables

• VIRTUALFISH_ACTIVATION_FILE (default: .venv) - the name of the file VirtualFish will use for the
auto-activation feature. Earlier versions of VirtualFish used .vfenv.

State Variables

• VF_AUTO_ACTIVATED - If the currently-activated virtualenv was activated automatically, set to the directory
that triggered the activation. Otherwise unset.

1.3. Plugins 7

VirtualFish Documentation, Release 2.5.3

1.3.3 Global Requirements (global_requirements)

Keeps a global requirements.txt file that is applied to every existing and new virtual environment. This behavior
can be disabled for a given session by setting the VIRTUALFISH_GLOBAL_REQUIREMENTS environment variable
to “0”. To disable on a per-invocation basis, prefix commands with the same variable:

VIRTUALFISH_GLOBAL_REQUIREMENTS="0" vf tmp

Commands

• vf requirements - Edit the global requirements file in your $EDITOR. Applies the requirements to all
virtualenvs on exit.

1.3.4 Projects (projects)

This plugin adds project management capabilities, including automatic directory switching upon virtual environment
activation. Typically a project directory contains files — such as source code managed by a version control system —
that are often stored separately from the virtual environment.

The following example will create a new project, with a matching virtual environment, both named YourProject:

vf project YourProject

The above command performs the following tasks:

1. creates new empty project directory in PROJECT_HOME (if there is no existing YourProject directory
within) and changes the current working directory to it

2. creates new virtual environment named YourProject and activates it

To work on an existing project, use the vf workon <name> command to activate the specified virtual environment
and change the current working directory to the project of the same name. For cases in which the project name differs
from the target virtualenv name, you can manually specify which virtualenv should be activated for a given project by
creating a .venv file inside the project root containing the name of the corresponding virtualenv.

If you use sub-folders, have projects located outside of PROJECT_HOME, or utilize a project organization strategy
that does not lend itself to storing all your projects in the root of a single directory, you may navigate to your project
and associate the current working directory with the currently-activated virtual environment via the following example
steps:

vf activate YourVirtualenv
cd /path/to/your/project
echo $PWD > $VIRTUAL_ENV/.project

In the future, you may then run vf workon YourVirtualenv to simultaneously activate YourVirtualenv
and switch to the /path/to/your/project directory.

Note: .project files are restored when calling vf upgrade --rebuild. If you are using both the Compati-
bility Aliases and Projects plugins, workon will alias vf workon instead of vf activate. If you are using both
the Auto-activation and Projects plugins, the project’s virtual environment will be deactivated automatically when you
leave the project’s directory.

8 Chapter 1. Contents

VirtualFish Documentation, Release 2.5.3

Commands

• vf project <virtualenv-options> <name> - Create a new project and matching virtual environ-
ment with the specified name and Virtualenv options, including the ability to specify a Python interpreter via
--python. If the compat_aliases plugin is enabled, mkproject is aliased to this command.

• vf workon <name> - Search for a project and/or virtualenv matching the specified name. If found, this
activates the appropriate virtualenv and switches to the respective project directory. If the compat_aliases
plugin is enabled, workon is aliased to this command.

• vf lsprojects - List projects available in $PROJECT_HOME (see below)

• vf cdproject - Search for a project matching the name of the currently activated virtualenv. If found,
this switches to the respective project directory. If the compat_aliases plugin is enabled, cdproject is
aliased to this command.

Configuration Variables

• PROJECT_HOME (default: ~/projects/) - Where to create new projects and where to look for existing
projects.

1.3.5 Environment Variables (environment)

This plugin provides the ability to automatically set environment variables when a virtual environment is ac-
tivated. The environment variables are stored in a .env file by default. This can be configured by setting
VIRTUALFISH_ENVIRONMENT_FILE to the desired file name. When using the Projects (projects) plugin, the
env file is stored in the project directory unless it is manually created in the $VIRTUAL_ENV directory. If the projects
plugin isn’t being used, the file is stored in the $VIRTUAL_ENV directory.

When the virtualenv is activated, the values in the env file will be added to the environment. If a variable with that
name already exists, that value is stored in __VF_ENVIRONMENT_OLD_VALUE_$key.

When the virtual environment is deactivated, if there was a pre-existing value it is returned to the environment. Other-
wise, the variable is erased.

The format of the env file is one key-value set per line separated by an =. Empty lines are ignored, as are any lines that
start with #. See the following:

This is a valid comment and declaration
FOO=bar

The empty line above is valid
BAR=baz # Inline comments like this one are NOT okay

Commands

• vf environment - Open the environment file for the active virtual environment in $VISUAL/$EDITOR, or
vi if neither variable is set.

1.3.6 Update Python (update_python)

1.3. Plugins 9

VirtualFish Documentation, Release 2.5.3

Note: The functionality provided by this plugin has been superseded by the vf upgrade command. This plugin
has therefore been deprecated and will likely be removed in the future.

This plugin adds commands to change the Python interpreter of the current virtual environment.

Commands

• vf update_python [<python_exe>] - Remove the current virtual environment and create a new one
with <python_exe> (defaults to VIRTUALFISH_DEFAULT_PYTHON if it is set, or the first executable
named python in your PATH), and then re-install the same versions of all packages with Pip.

• vf fix_python [<python_exe>] - Test the current virtual environment’s Python executable. If it
doesn’t work, update it with vf update_python [<python_exe>]. This may be useful when one of
your system’s Python executables is updated, which may break some of your virtual environments. In that case,
you probably just need to run: vf all vf fix_python

Configuration Variables

• VIRTUALFISH_DEFAULT_PYTHON (default: python) - The Python interpreter to use if not specified as an
argument to the above commands.

1.4 Extending VirtualFish

1.4.1 Variables

Virtualenv currently provides one global variable to allow you to inspect its state. (Keep in mind that more are provided
by VirtualFish plugins.)

• VIRTUAL_ENV - Path to the currently active virtualenv.

– Tips: use basename to get the virtualenv’s name, or set -q to see whether a virtualenv is active at all.

1.4.2 Events

VirtualFish emits Fish events instead of using hook scripts. To hook into events that VirtualFish emits, write a function
like this:

function myfunc --on-event virtualenv_did_activate
echo "The virtualenv" (basename $VIRTUAL_ENV) "was activated"

end

You can save your function by putting it in .config/fish/config.fish, or put it anywhere Fish will see it
before it needs to run. (Note: saving it with funcsave won’t work.)

Some events are emitted twice: once normally and once with the name of the virtualenv as part of the event name.
This is to make it easier to listen for events relevant to one specific virtualenv, for example:

function myfunc --on-event virtualenv_did_activate:my_site_env
set -gx DJANGO_SETTINGS_MODULE mysite.settings

end

10 Chapter 1. Contents

VirtualFish Documentation, Release 2.5.3

The full list of events is:

• virtualenv_did_setup_plugins

• virtualenv_will_activate

• virtualenv_will_activate:<env name>

• virtualenv_did_activate

• virtualenv_did_activate:<env name>

• virtualenv_will_deactivate

• virtualenv_will_deactivate:<env name>

• virtualenv_did_deactivate

• virtualenv_did_deactivate:<env name>

• virtualenv_will_create

• virtualenv_did_create

• virtualenv_did_create:<env name>

• virtualenv_will_upgrade

• virtualenv_will_upgrade:<env name>

• virtualenv_did_upgrade

• virtualenv_did_upgrade:<env name>

• virtualenv_will_remove

• virtualenv_will_remove:<env name>

• virtualenv_did_remove

• virtualenv_did_remove:<env name>

• virtualenv_did_connect

• virtualenv_did_connect:<env name>

1.5 Frequently Asked Questions

1.5.1 How do I ensure new environments always have the latest version of Pip?

You may see warnings from Pip about a newer available version, even on fresh environments you have just created. To
ensure Pip is automatically updated upon environment creation, enable the Global Requirements plugin and add Pip
via:

vf addplugins global_requirements
echo "pip" >> $VIRTUALFISH_HOME/global_requirements.txt

1.5.2 Why isn’t VirtualFish written in Python?

Mostly, for the same reasons Virtualenvwrapper isn’t.

1.5. Frequently Asked Questions 11

https://virtualenvwrapper.readthedocs.io/en/latest/design.html

VirtualFish Documentation, Release 2.5.3

1.5.3 Does VirtualFish work with Python 3? What about PyPy?

Yes! In fact, you can create Python 3 virtual environments even if your system Python is Python 2, or vice versa, using
the --python argument (see the Usage section for full details).

1.5.4 Why does VirtualFish use Virtualenv and not Python’s built-in venv module?

Virtualenv can create both Python 2 and Python 3 virtual environments, whereas Python’s built-in venv module can
only create Python 3 virtual environments. That said, since Python 2 is no longer officially supported by the Python
Software Foundation, Python 2 support is a very minor consideration when deciding which tool to use. The main
reason VirtualFish uses Virtualenv is due to its much faster speed. We have seen Virtualenv create environments in
one-fifth the amount of time that the venv module takes to perform the same task.

1.5.5 Why doesn’t VirtualFish use activate.fish?

VirtualFish uses its own internal virtual environment activation code instead of the activate.fish file that Vir-
tualenv generates for two main reasons. One is that when VirtualFish was originally written, activate.fish
didn’t actually work. The second reason, which is still valid today, is that activate.fish tries to modify your
fish_prompt function.

Because fish_prompt is a function and not a variable like in most other shells, modifying it programmatically is
not trivial, and the way that Virtualenv accomplishes it is more than a little hacky. The benefit of it being a function
is that the syntax for customising it is much less terse and cryptic than, say, PS1 on Bash. This is why VirtualFish
doesn’t attempt to modify your prompt, and instead tells you how to do it yourself.

1.6 See Also

This page is for other projects that integrate with VirtualFish, such as third-party plugins, prompts, and so on. If you
know of (or maintain!) such a project, and it’s not on this list, please submit a pull request.

1.6.1 Prompts

• Both bobthefish and scorphish themes for Oh My Fish! support VirtualFish.

12 Chapter 1. Contents

https://virtualenv.pypa.io/
https://virtualenv.pypa.io/
https://virtualenv.pypa.io/
https://virtualenv.pypa.io/
https://virtualenv.pypa.io/
https://virtualenv.pypa.io/
https://github.com/oh-my-fish/oh-my-fish

CHAPTER 2

Contributors

Sorted by date of first commit:

• Leigh Brenecki

• Justin Mayer

• David Reid

• Alex Gaynor

• Álvaro Lázaro Gallego

• Jan Kasiak

• David Adam

• Robson Roberto Souza Peixoto

• Casey Chance

• fenekku

• Trung Ly

• George Christou

13

	Contents
	Installation and Setup
	Usage
	Plugins
	Extending VirtualFish
	Frequently Asked Questions
	See Also

	Contributors

